Free paratopological groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

About remainders in compactifications of paratopological groups

In this paper‎, ‎we prove a dichotomy theorem for remainders in‎ ‎compactifications of paratopological groups‎: ‎every remainder of a ‎paratopological group $G$ is either Lindel"{o}f and meager or‎ ‎Baire‎. Furthermore, ‎we give a negative answer to a question posed in [D‎. ‎Basile and A‎. ‎Bella‎, ‎About remainders in compactifications of homogeneous spaces‎, ‎Comment‎. ‎Math‎. ‎Univ‎. ‎Caroli...

متن کامل

Lindelöf Σ-Spaces and R-Factorizable Paratopological Groups

We prove that if a paratopological group G is a continuous image of an arbitrary product of regular Lindelöf Σ-spaces, then it is R-factorizable and has countable cellularity. If in addition, G is regular, then it is totally ω-narrow and satisfies celω(G) ≤ ω, and the Hewitt–Nachbin completion of G is again an R-factorizable paratopological group.

متن کامل

Feebly compact paratopological groups and real-valued functions

We present several examples of feebly compact Hausdorff paratopological groups (i.e., groups with continuous multiplication) which provide answers to a number of questions posed in the literature. It turns out that a 2-pseudocompact, feebly compact Hausdorff paratopological group G can fail to be a topological group. Our group G has the Baire property, is Fréchet–Urysohn, but it is not precompa...

متن کامل

Free Groups

Free Groups are, in a sense, the most generic kind of group. They are defined over a set of generators with no additional relations in between them. They play an important role in the definition of group presentations and in other fields. This theory provides the definition of Free Group as the set of fully canceled words in the generators. The universal property is proven, as well as some isom...

متن کامل

Free Groups

In this note we give an alternative construction of free groups by working with semigroups. We also give some basic properties of free groups. A semigroup is a nonempty set with an associative binary operation. If S is a semigroup, we denote the operation by (a, b) 7→ ab. If S has an identity, then we call S a semigroup with 1. Such semigroups are often called monoids. We will restrict our atte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied General Topology

سال: 2015

ISSN: 1989-4147,1576-9402

DOI: 10.4995/agt.2015.1874